Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38475092

RESUMO

COVID-19 analysis from medical imaging is an important task that has been intensively studied in the last years due to the spread of the COVID-19 pandemic. In fact, medical imaging has often been used as a complementary or main tool to recognize the infected persons. On the other hand, medical imaging has the ability to provide more details about COVID-19 infection, including its severity and spread, which makes it possible to evaluate the infection and follow-up the patient's state. CT scans are the most informative tool for COVID-19 infection, where the evaluation of COVID-19 infection is usually performed through infection segmentation. However, segmentation is a tedious task that requires much effort and time from expert radiologists. To deal with this limitation, an efficient framework for estimating COVID-19 infection as a regression task is proposed. The goal of the Per-COVID-19 challenge is to test the efficiency of modern deep learning methods on COVID-19 infection percentage estimation (CIPE) from CT scans. Participants had to develop an efficient deep learning approach that can learn from noisy data. In addition, participants had to cope with many challenges, including those related to COVID-19 infection complexity and crossdataset scenarios. This paper provides an overview of the COVID-19 infection percentage estimation challenge (Per-COVID-19) held at MIA-COVID-2022. Details of the competition data, challenges, and evaluation metrics are presented. The best performing approaches and their results are described and discussed.


Assuntos
COVID-19 , Pandemias , Humanos , Benchmarking , Cintilografia , Tomografia Computadorizada por Raios X
2.
Med Image Anal ; 86: 102797, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36966605

RESUMO

Since the emergence of the Covid-19 pandemic in late 2019, medical imaging has been widely used to analyze this disease. Indeed, CT-scans of the lungs can help diagnose, detect, and quantify Covid-19 infection. In this paper, we address the segmentation of Covid-19 infection from CT-scans. To improve the performance of the Att-Unet architecture and maximize the use of the Attention Gate, we propose the PAtt-Unet and DAtt-Unet architectures. PAtt-Unet aims to exploit the input pyramids to preserve the spatial awareness in all of the encoder layers. On the other hand, DAtt-Unet is designed to guide the segmentation of Covid-19 infection inside the lung lobes. We also propose to combine these two architectures into a single one, which we refer to as PDAtt-Unet. To overcome the blurry boundary pixels segmentation of Covid-19 infection, we propose a hybrid loss function. The proposed architectures were tested on four datasets with two evaluation scenarios (intra and cross datasets). Experimental results showed that both PAtt-Unet and DAtt-Unet improve the performance of Att-Unet in segmenting Covid-19 infections. Moreover, the combination architecture PDAtt-Unet led to further improvement. To Compare with other methods, three baseline segmentation architectures (Unet, Unet++, and Att-Unet) and three state-of-the-art architectures (InfNet, SCOATNet, and nCoVSegNet) were tested. The comparison showed the superiority of the proposed PDAtt-Unet trained with the proposed hybrid loss (PDEAtt-Unet) over all other methods. Moreover, PDEAtt-Unet is able to overcome various challenges in segmenting Covid-19 infections in four datasets and two evaluation scenarios.


Assuntos
COVID-19 , Pandemias , Humanos , Tomografia Computadorizada por Raios X , Processamento de Imagem Assistida por Computador
3.
Sensors (Basel) ; 21(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502769

RESUMO

Since the appearance of the COVID-19 pandemic (at the end of 2019, Wuhan, China), the recognition of COVID-19 with medical imaging has become an active research topic for the machine learning and computer vision community. This paper is based on the results obtained from the 2021 COVID-19 SPGC challenge, which aims to classify volumetric CT scans into normal, COVID-19, or community-acquired pneumonia (Cap) classes. To this end, we proposed a deep-learning-based approach (CNR-IEMN) that consists of two main stages. In the first stage, we trained four deep learning architectures with a multi-tasks strategy for slice-level classification. In the second stage, we used the previously trained models with an XG-boost classifier to classify the whole CT scan into normal, COVID-19, or Cap classes. Our approach achieved a good result on the validation set, with an overall accuracy of 87.75% and 96.36%, 52.63%, and 95.83% sensitivities for COVID-19, Cap, and normal, respectively. On the other hand, our approach achieved fifth place on the three test datasets of SPGC in the COVID-19 challenge, where our approach achieved the best result for COVID-19 sensitivity. In addition, our approach achieved second place on two of the three testing sets.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , Pandemias , SARS-CoV-2 , Tomografia Computadorizada por Raios X
4.
J Imaging ; 7(9)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34564115

RESUMO

COVID-19 infection recognition is a very important step in the fight against the COVID-19 pandemic. In fact, many methods have been used to recognize COVID-19 infection including Reverse Transcription Polymerase Chain Reaction (RT-PCR), X-ray scan, and Computed Tomography scan (CT- scan). In addition to the recognition of the COVID-19 infection, CT scans can provide more important information about the evolution of this disease and its severity. With the extensive number of COVID-19 infections, estimating the COVID-19 percentage can help the intensive care to free up the resuscitation beds for the critical cases and follow other protocol for less severity cases. In this paper, we introduce COVID-19 percentage estimation dataset from CT-scans, where the labeling process was accomplished by two expert radiologists. Moreover, we evaluate the performance of three Convolutional Neural Network (CNN) architectures: ResneXt-50, Densenet-161, and Inception-v3. For the three CNN architectures, we use two loss functions: MSE and Dynamic Huber. In addition, two pretrained scenarios are investigated (ImageNet pretrained models and pretrained models using X-ray data). The evaluated approaches achieved promising results on the estimation of COVID-19 infection. Inception-v3 using Dynamic Huber loss function and pretrained models using X-ray data achieved the best performance for slice-level results: 0.9365, 5.10, and 9.25 for Pearson Correlation coefficient (PC), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE), respectively. On the other hand, the same approach achieved 0.9603, 4.01, and 6.79 for PCsubj, MAEsubj, and RMSEsubj, respectively, for subject-level results. These results prove that using CNN architectures can provide accurate and fast solution to estimate the COVID-19 infection percentage for monitoring the evolution of the patient state.

5.
J Imaging ; 7(3)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-34460707

RESUMO

In recent years, automatic tissue phenotyping has attracted increasing interest in the Digital Pathology (DP) field. For Colorectal Cancer (CRC), tissue phenotyping can diagnose the cancer and differentiate between different cancer grades. The development of Whole Slide Images (WSIs) has provided the required data for creating automatic tissue phenotyping systems. In this paper, we study different hand-crafted feature-based and deep learning methods using two popular multi-classes CRC-tissue-type databases: Kather-CRC-2016 and CRC-TP. For the hand-crafted features, we use two texture descriptors (LPQ and BSIF) and their combination. In addition, two classifiers are used (SVM and NN) to classify the texture features into distinct CRC tissue types. For the deep learning methods, we evaluate four Convolutional Neural Network (CNN) architectures (ResNet-101, ResNeXt-50, Inception-v3, and DenseNet-161). Moreover, we propose two Ensemble CNN approaches: Mean-Ensemble-CNN and NN-Ensemble-CNN. The experimental results show that the proposed approaches outperformed the hand-crafted feature-based methods, CNN architectures and the state-of-the-art methods in both databases.

6.
Sensors (Basel) ; 21(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802428

RESUMO

The recognition of COVID-19 infection from X-ray images is an emerging field in the learning and computer vision community. Despite the great efforts that have been made in this field since the appearance of COVID-19 (2019), the field still suffers from two drawbacks. First, the number of available X-ray scans labeled as COVID-19-infected is relatively small. Second, all the works that have been carried out in the field are separate; there are no unified data, classes, and evaluation protocols. In this work, based on public and newly collected data, we propose two X-ray COVID-19 databases, which are three-class COVID-19 and five-class COVID-19 datasets. For both databases, we evaluate different deep learning architectures. Moreover, we propose an Ensemble-CNNs approach which outperforms the deep learning architectures and shows promising results in both databases. In other words, our proposed Ensemble-CNNs achieved a high performance in the recognition of COVID-19 infection, resulting in accuracies of 100% and 98.1% in the three-class and five-class scenarios, respectively. In addition, our approach achieved promising results in the overall recognition accuracy of 75.23% and 81.0% for the three-class and five-class scenarios, respectively. We make our databases of COVID-19 X-ray scans publicly available to encourage other researchers to use it as a benchmark for their studies and comparisons.


Assuntos
COVID-19/diagnóstico por imagem , Aprendizado Profundo , Redes Neurais de Computação , Radiografia Torácica , Algoritmos , Humanos , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...